arrow-left

All pages
gitbookPowered by GitBook
1 of 1

Loading...

Minkowski reduced

hashtag
Definition

The basis{bi}i=1d\left\{b_i\right\}_{i=1}^d{bi​}i=1d​ is Minkowski-reduced if bib_ibi​has minimum length among all vectors in LLL linearly independent from{bj}j=1iβˆ’1\left\{b_j\right\}_{j=1}^{i-1}{bj​}j=1iβˆ’1​. Equivalently, bib_ibi​has minimum length among all vectors vvvsuch that {b1,…,biβˆ’1,v}\left\{b_1,\dots,b_{i-1},v\right\}{b1​,…,biβˆ’1​,v}can be extended to form a basis ofLLL. Such a notion is strongest among all lattice reduction notions and is generally extremely hard to compute. Another equivalent definition is

βˆ₯biβˆ₯≀βˆ₯βˆ‘j=idcjbjβˆ₯gcd⁑(cj)=1\left\lVert b_i\right\rVert\leq\left\lVert\sum_{j=i}^dc_jb_j\right\rVert\quad\gcd\left(c_j\right)=1βˆ₯bi​βˆ₯≀​j=iβˆ‘d​cj​bj​​gcd(cj​)=1

hashtag
Bounds

The proof presented here is based off [Waerden 1956]. We proceed by induction. Letbe a Minkowski-reduced basis for some lattice. The lower bound is immediate and for , the upper bound is immediate as well.

Let be linearly independent vectors such that. Let be the sublattice generated by . Evidently somemust exist such thatis not in . Consider the new lattice . Letbe the shortest vector insuch thatis a basis for and we have

If, then we are done sincecan be extended to a basis of , so . Otherwise, we have . Let whereis the projection ofin. Since by definition we have, we must have

Furthermore, since

we have , hence we have

but since by definition, the case of cannot occur here (hence in these cases).

hashtag
Exercises

1) Show that both definitions of Minkowski-reduced lattice are equivalent

2) Consider the lattice . We have showed in a previous exercise that the successive minima are allbut no basiscan satisfy , show that for any Minkowski reduced basis , the basis must satisfy

Ξ»i(L)2≀βˆ₯biβˆ₯2≀max⁑(1,(54)iβˆ’4)Ξ»i(L)2\lambda_i(L)^2\leq\left\lVert b_i\right\rVert^2\leq\max\left(1,\left(\frac54\right)^{i-4}\right)\lambda_i(L)^2Ξ»i​(L)2≀βˆ₯bi​βˆ₯2≀max(1,(45​)iβˆ’4)Ξ»i​(L)2
bib_ibi​
LLL
i=1i=1i=1
v1,v2…viv_1,v_2\dots v_iv1​,v2​…vi​
βˆ₯vjβˆ₯=Ξ»j(L)\left\lVert v_j\right\rVert=\lambda_j(L)βˆ₯vj​βˆ₯=Ξ»j​(L)
Liβˆ’1L_{i-1}Liβˆ’1​
b1,b2,…biβˆ’1b_1,b_2,\dots b_{i-1}b1​,b2​,…biβˆ’1​
kkk
vkv_kvk​
Liβˆ’1L_{i-1}Liβˆ’1​
Lβ€²=L∩span(b1,b2,…biβˆ’1,vk)L'=L\cap\text{span}\left(b_1,b_2,\dots b_{i-1},v_k\right)Lβ€²=L∩span(b1​,b2​,…biβˆ’1​,vk​)
vkβ€²v'_kvk′​
Lβ€²βˆ’Liβˆ’1L'-L_{i-1}Lβ€²βˆ’Liβˆ’1​
b1,b2,…,biβˆ’1,vkβ€²b_1,b_2,\dots,b_{i-1},v'_kb1​,b2​,…,biβˆ’1​,vk′​
Lβ€²L'Lβ€²
vk=a1b1+a2b2+β‹―+aiβˆ’1biβˆ’1+nvkβ€²ai,n∈Zβˆ₯biβˆ₯≀βˆ₯vkβ€²βˆ₯v_k=a_1b_1+a_2b_2+\dots+a_{i-1}b_{i-1}+nv'_k\quad a_i,n\in\mathbb Z\\ \left\lVert b_i\right\rVert\leq\left\lVert v'_k\right\rVertvk​=a1​b1​+a2​b2​+β‹―+aiβˆ’1​biβˆ’1​+nvk′​ai​,n∈Zβˆ₯bi​βˆ₯≀βˆ₯vk′​βˆ₯
n=1n=1n=1
vkv_kvk​
LLL
βˆ₯biβˆ₯≀βˆ₯vkβˆ₯=Ξ»k(L)≀λi(L)\left\lVert b_i\right\rVert\leq\left\lVert v_k\right\rVert=\lambda_k(L)\leq\lambda_i(L)βˆ₯bi​βˆ₯≀βˆ₯vk​βˆ₯=Ξ»k​(L)≀λi​(L)
n2β‰₯4n^2\geq4n2β‰₯4
vkβ€²=p+qv_k'=p+qvk′​=p+q
ppp
vkβ€²v'_kvk′​
Liβˆ’1L_{i-1}Liβˆ’1​
βˆ₯pβˆ₯2≀βˆ₯pΒ±biβˆ₯2\left\lVert p\right\rVert^2\leq\left\lVert p\pm b_i\right\rVert^2βˆ₯pβˆ₯2≀βˆ₯pΒ±bi​βˆ₯2
βˆ₯pβˆ₯2≀14βˆ‘j=1iβˆ’1βˆ₯bjβˆ₯2\left\lVert p\right\rVert^2\leq\frac14\sum_{j=1}^{i-1}\left\lVert b_j\right\rVert^2βˆ₯pβˆ₯2≀41​j=1βˆ‘iβˆ’1​βˆ₯bj​βˆ₯2
Ξ»k2=βˆ₯vkβˆ₯2=βˆ₯a1b1+a2b2+…aiβˆ’1biβˆ’1+pβˆ₯2+n2βˆ₯qβˆ₯2\lambda_k^2=\left\lVert v_k\right\rVert^2=\left\lVert a_1b_1+a_2b_2+\dots a_{i-1}b_{i-1}+p\right\rVert^2+n^2\left\lVert q\right\rVert^2Ξ»k2​=βˆ₯vk​βˆ₯2=βˆ₯a1​b1​+a2​b2​+…aiβˆ’1​biβˆ’1​+pβˆ₯2+n2βˆ₯qβˆ₯2
βˆ₯qβˆ₯2≀14Ξ»k2\left\lVert q\right\rVert^2\leq\frac14\lambda_k^2βˆ₯qβˆ₯2≀41​λk2​
βˆ₯biβˆ₯≀14βˆ‘j=1iβˆ’1βˆ₯bjβˆ₯2+14Ξ»k2≀14βˆ‘j=1iβˆ’1max⁑(1,(54)iβˆ’4)Ξ»j(L)2+14Ξ»k(L)2≀14(1+βˆ‘j=1iβˆ’1max⁑(1,(54)iβˆ’4))Ξ»i(L)2{=max⁑(1,(54)iβˆ’4)Ξ»i(L)2iβ‰₯4<Ξ»i(L)2i=2,3\begin{align*} \left\lVert b_i\right\rVert&\leq\frac14\sum_{j=1}^{i-1}\left\lVert b_j\right\rVert^2+\frac14\lambda_k^2\\ &\leq\frac14\sum_{j=1}^{i-1}\max\left(1,\left(\frac54\right)^{i-4}\right)\lambda_j(L)^2+\frac14\lambda_k(L)^2\\ &\leq\frac14\left(1+\sum_{j=1}^{i-1}\max\left(1,\left(\frac54\right)^{i-4}\right)\right)\lambda_i(L)^2\\ &\begin{cases}=\max\left(1,\left(\frac54\right)^{i-4}\right)\lambda_i(L)^2&i\geq4\\<\lambda_i(L)^2&i=2,3\end{cases}\\ \end{align*}βˆ₯bi​βˆ₯​≀41​j=1βˆ‘iβˆ’1​βˆ₯bj​βˆ₯2+41​λk2​≀41​j=1βˆ‘iβˆ’1​max(1,(45​)iβˆ’4)Ξ»j​(L)2+41​λk​(L)2≀41​(1+j=1βˆ‘iβˆ’1​max(1,(45​)iβˆ’4))Ξ»i​(L)2{=max(1,(45​)iβˆ’4)Ξ»i​(L)2<Ξ»i​(L)2​iβ‰₯4i=2,3​​
Ξ»i(L)2≀βˆ₯biβˆ₯2\lambda_i(L)^2\leq \left\lVert b_i\right\rVert^2Ξ»i​(L)2≀βˆ₯bi​βˆ₯2
i=2,3i=2,3i=2,3
n=1n=1n=1
L=(2000002000002000002011111)L=\begin{pmatrix}2&0&0&0&0\\0&2&0&0&0\\0&0&2&0&0\\0&0&0&2&0\\1&1&1&1&1\end{pmatrix}L=​20001​02001​00201​00021​00001​​
222
bib_ibi​
βˆ₯biβˆ₯=Ξ»i\left\lVert b_i\right\rVert=\lambda_iβˆ₯bi​βˆ₯=Ξ»i​
bib_ibi​
βˆ₯biβˆ₯2=max⁑(1,(54)iβˆ’4)Ξ»i(L)2\left\lVert b_i\right\rVert^2=\max\left(1,\left(\frac54\right)^{i-4}\right)\lambda_i(L)^2βˆ₯bi​βˆ₯2=max(1,(45​)iβˆ’4)Ξ»i​(L)2