CryptoBook
  • CryptoBook
  • Book Plan
  • Style Guide
    • Sample Page
  • Contributors
  • Fundamentals
    • Mathematical Notation
    • Division and Greatest common divisor
      • Euclidean Algorithm
    • Modular Arithmetic
      • Theorems of Wilson, Euler, and Fermat
        • Fermat's Little Theorem in Detail
        • Euler's Theorem in Detail
      • Quadratic Residues
    • Continued Fractions
  • Number Theory
  • Ideals
  • Polynomials With Shared Roots
  • Integer Factorization
    • Pollard rho
    • Sieves
  • Abstract algebra
    • Groups
      • Another take on groups
      • Discrete Log Problem
    • Rings
    • Fields
    • Polynomials
  • Elliptic Curves
    • Untitled
  • Lattices
    • Introduction
    • LLL reduction
      • Gram-Schmidt Orthogonalization
      • Lagrange's algorithm
      • LLL reduction
    • Lattice reduction
      • Minkowski reduced
      • HKZ reduced
      • LLL reduced
    • Applications
      • Coppersmith algorithm
      • Extensions of Coppersmith algorithm
    • Hard lattice problems
    • Lattices of interest
    • Cryptographic lattice problems
      • Short integer solutions (SIS)
      • Learning with errors (LWE)
      • Ring-LWE
      • NTRU
    • Interactive fun
    • Resources and notations
  • Asymmetric Cryptography
  • RSA
    • Proof of correctness
    • RSA application
    • Low Private Component Attacks
      • Wiener's Attack
      • Boneh-Durfee Attack
    • Common Modulus Attack
    • Recovering the Modulus
  • Diffie-Hellman
    • MITM
  • Elliptic Curve Cryptography
  • Symmetric Cryptography
    • Encryption
    • The One Time Pad
    • AES
      • Rijndael Finite Field
      • Round Transformations
  • Hashes
    • Introduction / overview
    • The Birthday paradox / attack
  • Isogeny Based Cryptography
    • Introduction to Isogeny Cryptography
    • Isogenies
    • Isogeny and Ramanujan Graphs
  • Appendices
    • Sets and Functions
    • Probability Theory
Powered by GitBook
On this page
  • Continued Fractions
  • Notation
  • Computation of simple continued fractions
  • Convergents of continued fraction

Was this helpful?

Export as PDF
  1. Fundamentals

Continued Fractions

PreviousQuadratic ResiduesNextIdeals

Last updated 4 years ago

Was this helpful?

Continued Fractions

Continued fractions are a way of representing a number as a sum of an integer and a fraction.

Mathematically, a continued fraction is a representation

a0+b0a1+b1a2+b2⋱a_{0} + \frac{b_{0}}{ a_{1} + \frac{b_{1}}{ a_{2} + \frac{b_{2}}{ \ddots }}}a0​+a1​+a2​+⋱b2​​b1​​b0​​

ai,bia_{i}, b_{i}ai​,bi​are complex numbers. The continued fraction with bi=1 ∀ib_{i} = 1\ \forall ibi​=1 ∀i is called a simple continued fraction and continued fractions with finite number of aia_{i}ai​ are called finite continued fractions.

Consider example rational numbers,

1711=1+611116=1+5665=1+1551=5+0\frac{17}{11} = 1 + \frac{6}{11} \\[10pt] \frac{11}{6} = 1 + \frac{5}{6} \\[10pt] \frac{6}{5} = 1 + \frac{1}{5} \\[10pt] \frac{5}{1} = 5 + 01117​=1+116​611​=1+65​56​=1+51​15​=5+0

the continued fractions could be written as

51=565=1+15116=1+56=1+165=1+11+151711=1+611=1+1116=1+11+11+15\frac{5}{1} =5 \\[10pt] \frac{6}{5} = 1 + \frac{1}{5} \\[10pt] \frac{11}{6} = 1 + \frac{5}{6} = 1 + \frac{1}{\frac{6}{5}} = 1 + \frac{1}{1 + \frac{1}{5}} \\[10pt] \frac{17}{11} = 1 + \frac{6}{11} = 1 + \frac{1}{\frac{11}{6}} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{5}}}15​=556​=1+51​611​=1+65​=1+56​1​=1+1+51​1​1117​=1+116​=1+611​1​=1+1+1+51​1​1​

Notation

for the above example

Computation of simple continued fractions

The above notation might not be obvious. Observing the structure of continued fraction with few coefficients will make them more evident:

SageMath provides functions continued_fraction and continued_fraction_list to work with continued fractions. Below is presented a simple implementation of continued_fractions.

def continued_fraction_list(xi):
    ai = floor(xi)
    if xi == ai: # last coefficient
        return [ai]
    return [ai] + continued_fraction_list(1/(x - ai))

Convergents of continued fraction

One of the immediate applications of the convergents is that they give rational approximations given the continued fraction of a number. This allows finding rational approximations to irrational numbers.

Convergents of continued fractions can be calculated in sage

sage: cf = continued_fraction(17/11)
sage: convergents = cf.convergents()
sage: cf
[1; 1, 1, 5]
sage: convergents
[1, 2, 3/2, 17/11]

Continued fractions have many other applications. One such applicable in cryptology is based on Legendre's theorem in diophantine approximations.

a0+1a1+1a2+1⋱a_{0} + \frac{1}{ a_{1} + \frac{1}{ a_{2} + \frac{1}{ \ddots }}}a0​+a1​+a2​+⋱1​1​1​

A simple continued fraction is represented as a list of coefficients(aia_{i}ai​) i.e

x=[a0; a1, a2, a3, a4, a5, a6, …]x = [a_{0};\ a_{1},\ a_{2},\ a_{3},\ a_{4},\ a_{5},\ a_{6},\ \ldots]x=[a0​; a1​, a2​, a3​, a4​, a5​, a6​, …]
1711=[1; 1, 1, 5]  ,116=[1; 1, 5]  ,65=[1;5]  ,51=[5;] \frac{17}{11} = [1;\ 1,\ 1,\ 5]\ \ ,\frac{11}{6} = [1;\ 1,\ 5]\ \ ,\frac{6}{5} = [1; 5]\ \ ,\frac{5}{1} = [5;]1117​=[1; 1, 1, 5]  ,611​=[1; 1, 5]  ,56​=[1;5]  ,15​=[5;]

Given a number xxx, the coefficients(aia_{i}ai​) in its continued fraction representation can be calculated recursively using

x0=xai=⌊xi⌋xi+1=1xi−aix_{0} = x \\[4pt] a_{i} = \lfloor x_{i} \rfloor \\[4pt] x_{i+1} = \frac{1}{x_{i} - a_{i}}x0​=xai​=⌊xi​⌋xi+1​=xi​−ai​1​
x0=a0+1a1+1a2,   x1=a1+1a2,   x2=a2xi=ai+1xi+1xi+1=1xi−aix_{0} = a_{0} + \frac{1}{a_{1} + \frac{1}{a_{2}}},\ \ \ x_{1} = a_{1} + \frac{1}{a_{2}}, \ \ \ x_{2} = a_{2} \\[10pt] x_{i} = a_{i} + \frac{1}{x_{i+1}} \\[10pt] x_{i+1} = \frac{1}{x_{i} - a_{i}}x0​=a0​+a1​+a2​1​1​,   x1​=a1​+a2​1​,   x2​=a2​xi​=ai​+xi+1​1​xi+1​=xi​−ai​1​

The kthk^{th}kthconvergent of a continued fractionx=[a0;a1, a2, a3, a4,…]x = [a_{0}; a_{1},\ a_{2},\ a_{3},\ a_{4},\ldots] x=[a0​;a1​, a2​, a3​, a4​,…]is the numerical value or approximation calculated using the firstk−1k - 1k−1coefficients of the continued fraction. The firstkkkconvergents are

a01,   a0+1a1,   a0+1a1+1a2, …, a0+1a1+⋱ak−2+1ak−1\frac{a_{0}}{1},\ \ \ a_{0} + \frac{1}{a_{1}}, \ \ \ a_{0} + \frac{1}{a_{1} + \frac{1}{a_{2}}}, \ \ldots,\ a_{0} + \frac{1}{a_{1} + \frac{\ddots} {a_{k-2} + \frac{1}{a_{k-1}}}}1a0​​,   a0​+a1​1​,   a0​+a1​+a2​1​1​, …, a0​+a1​+ak−2​+ak−1​1​⋱​1​

Theorem: if∣x−ab∣<1b2\mid x - \frac{a}{b} \mid < \frac{1}{b^{2}}∣x−ba​∣<b21​, thenab\frac{a}{b}ba​is a convergent ofxxx.

Wiener's attack on the RSA cryptosystem works by proving that under certain conditions, an equation of the form∣x−ab∣\mid x - \frac{a}{b} \mid∣x−ba​∣could be derived wherexxxis entirely made up of public information andab\frac{a}{b}ba​is made up of private information. Under assumed conditions, the inequality∣x−ab∣<1b2\mid x - \frac{a}{b} \mid < \frac{1}{b^{2}}∣x−ba​∣<b21​is statisfied, and the valueab\frac{a}{b}ba​(private information) is calculated from convergents ofxxx(public information), consequently breaking the RSA cryptosystem.