CryptoBook
  • CryptoBook
  • Book Plan
  • Style Guide
    • Sample Page
  • Contributors
  • Fundamentals
    • Mathematical Notation
    • Division and Greatest common divisor
      • Euclidean Algorithm
    • Modular Arithmetic
      • Theorems of Wilson, Euler, and Fermat
        • Fermat's Little Theorem in Detail
        • Euler's Theorem in Detail
      • Quadratic Residues
    • Continued Fractions
  • Number Theory
  • Ideals
  • Polynomials With Shared Roots
  • Integer Factorization
    • Pollard rho
    • Sieves
  • Abstract algebra
    • Groups
      • Another take on groups
      • Discrete Log Problem
    • Rings
    • Fields
    • Polynomials
  • Elliptic Curves
    • Untitled
  • Lattices
    • Introduction
    • LLL reduction
      • Gram-Schmidt Orthogonalization
      • Lagrange's algorithm
      • LLL reduction
    • Lattice reduction
      • Minkowski reduced
      • HKZ reduced
      • LLL reduced
    • Applications
      • Coppersmith algorithm
      • Extensions of Coppersmith algorithm
    • Hard lattice problems
    • Lattices of interest
    • Cryptographic lattice problems
      • Short integer solutions (SIS)
      • Learning with errors (LWE)
      • Ring-LWE
      • NTRU
    • Interactive fun
    • Resources and notations
  • Asymmetric Cryptography
  • RSA
    • Proof of correctness
    • RSA application
    • Low Private Component Attacks
      • Wiener's Attack
      • Boneh-Durfee Attack
    • Common Modulus Attack
    • Recovering the Modulus
  • Diffie-Hellman
    • MITM
  • Elliptic Curve Cryptography
  • Symmetric Cryptography
    • Encryption
    • The One Time Pad
    • AES
      • Rijndael Finite Field
      • Round Transformations
  • Hashes
    • Introduction / overview
    • The Birthday paradox / attack
  • Isogeny Based Cryptography
    • Introduction to Isogeny Cryptography
    • Isogenies
    • Isogeny and Ramanujan Graphs
  • Appendices
    • Sets and Functions
    • Probability Theory
Powered by GitBook
On this page
  • Motivation
  • Isogenies of Elliptic Curves
  • References

Was this helpful?

Export as PDF
  1. Isogeny Based Cryptography

Isogenies

PreviousIntroduction to Isogeny CryptographyNextIsogeny and Ramanujan Graphs

Last updated 4 years ago

Was this helpful?

Motivation

Prerequisites: in this section we assume the reader is somewhat familiar with elliptic curves and begin by considering morphisms (maps) between elliptic curves.

Humans are fascinated with symmetries. The guiding star of theoretical physics is the study of dualities. How much one thing can be said to be another leads to strange and beautiful links between areas of mathematics that appear to be totally distinct.

A cruical piece of building this understanding is how one can map between objects which share structure. When we learn about topology, we are given the fun: "A doughnut is the same as a mug"; a statement which says within topology, we identify objects related by continuous functions.

Elliptic curves are beautiful mathematical objects. The fact that a geometric comes hand-in-hand with a algebraic group law is, to me, incredible. The study of isogenies is the study of maps (morphisms) between elliptic curves which preserves the origin. This condition is enough to preserve the group scheme of the elliptic curve.

In short, isogenies allow us to map between curves preserving their geometric properties (as projective varieties) and algebraic properties (the group associated with point addition).

Isogenies of Elliptic Curves

Definition: We say an isogeny ϕ:E1→E2\phi : E_1 \to E_2ϕ:E1​→E2​ between elliptic curves defined over a field kkkis a surjective morphism of curves which includes a group homomorphism E1(kˉ)→E1(kˉ)E_1(\bar{k}) \to E_1(\bar{k})E1​(kˉ)→E1​(kˉ)

References

https://arxiv.org/pdf/1711.04062.pdf
https://math.mit.edu/classes/18.783/2019/LectureNotes5.pdf
https://doc.sagemath.org/html/en/reference/arithmetic_curves/sage/schemes/elliptic_curves/ell_curve_isogeny.html