Example: Ideals of the integers
Definition - Ideal of Z
I⊆Zis an ideal ⟺∀ a,b∈I and,z ∈Zwe have
a+b∈I and az∈I
Example: aZ={az : z∈Z}→2Z,3Z,4Z,… - multiples of a
Remarks:
∀a,b∈Zwe have b∈aZ⟺a∣b
I1+I2={a1+a2 : a1∈I1,a2∈I2} is an ideal
Example: Consider 18Z+12Z. This ideal contains 6=18⋅1+12⋅(−1)⇒18Z+12Z=6Z
Greatest common divisor
Let a,b∈Z be 2 integers. If d=gcd(a,b)⇒aZ+bZ=dZ