Resources and notations
References/Resources
Nguyen, P. Q., & Vallée, B. (Eds.). (2010). The LLL Algorithm. Information Security and Cryptography. doi:10.1007/978-3-642-02295-1
Massive survey, lots of detail if you're extremely interested)
May, A. (2003). New RSA Vulnerabilities Using Lattice Reduction Methods. Universität Paderborn.
Excellent exposition to LLL and coppersmith as well as showing some RSA attacks via LLL
Lenstra, A. K., Lenstra, H. W., & Lovász, L. (1982). Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4), 515–534. doi:10.1007/bf01457454
The original LLL paper, quite a nice read overall + proof that LLL works
Coppersmith, D. (1996). Finding a Small Root of a Univariate Modular Equation. Lecture Notes in Computer Science, 155–165. doi:10.1007/3-540-68339-9_14
Coppersmith, D. (1996). Finding a Small Root of a Bivariate Integer Equation; Factoring with High Bits Known. Lecture Notes in Computer Science, 178–189. doi:10.1007/3-540-68339-9_16
Both of these paper introduces the coppersmith algorithm as well as provide some examples
Waerden, B. L. (1956). Die Reduktionstheorie Der Positiven Quadratischen Formen. Acta Mathematica, 96(0), 265–309. doi:10.1007/bf02392364
Notation
L lattice
dim(L)dimension of lattice
vol(L)volume of lattice
bi a chosen basis for L
B matrix whose ith row vectors is bi
bi∗ Gram-Schmidt orthogonalization of bi(without normalization)
B∗matrix whose ith row vectors is bi∗
μi,j=⟨bj∗,bj∗⟩⟨bi,bj∗⟩ Gram-Schmidt coefficients
λi(L) the ith successive minima of L
Last updated
Was this helpful?