CryptoBook
  • CryptoBook
  • Book Plan
  • Style Guide
    • Sample Page
  • Contributors
  • Fundamentals
    • Mathematical Notation
    • Division and Greatest common divisor
      • Euclidean Algorithm
    • Modular Arithmetic
      • Theorems of Wilson, Euler, and Fermat
        • Fermat's Little Theorem in Detail
        • Euler's Theorem in Detail
      • Quadratic Residues
    • Continued Fractions
  • Number Theory
  • Ideals
  • Polynomials With Shared Roots
  • Integer Factorization
    • Pollard rho
    • Sieves
  • Abstract algebra
    • Groups
      • Another take on groups
      • Discrete Log Problem
    • Rings
    • Fields
    • Polynomials
  • Elliptic Curves
    • Untitled
  • Lattices
    • Introduction
    • LLL reduction
      • Gram-Schmidt Orthogonalization
      • Lagrange's algorithm
      • LLL reduction
    • Lattice reduction
      • Minkowski reduced
      • HKZ reduced
      • LLL reduced
    • Applications
      • Coppersmith algorithm
      • Extensions of Coppersmith algorithm
    • Hard lattice problems
    • Lattices of interest
    • Cryptographic lattice problems
      • Short integer solutions (SIS)
      • Learning with errors (LWE)
      • Ring-LWE
      • NTRU
    • Interactive fun
    • Resources and notations
  • Asymmetric Cryptography
  • RSA
    • Proof of correctness
    • RSA application
    • Low Private Component Attacks
      • Wiener's Attack
      • Boneh-Durfee Attack
    • Common Modulus Attack
    • Recovering the Modulus
  • Diffie-Hellman
    • MITM
  • Elliptic Curve Cryptography
  • Symmetric Cryptography
    • Encryption
    • The One Time Pad
    • AES
      • Rijndael Finite Field
      • Round Transformations
  • Hashes
    • Introduction / overview
    • The Birthday paradox / attack
  • Isogeny Based Cryptography
    • Introduction to Isogeny Cryptography
    • Isogenies
    • Isogeny and Ramanujan Graphs
  • Appendices
    • Sets and Functions
    • Probability Theory
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. Isogeny Based Cryptography

Isogeny and Ramanujan Graphs

PreviousIsogeniesNextSets and Functions

Last updated 4 years ago

Was this helpful?

I (Jack) know nothing about this. At all. But it will need to be talked about.

  • Isogeny graph (general definition, degree, duals...).

  • Starting vertex (Bröker's algorithm).

  • Isogeny Volcanos: Sutherland might be a good source .

  • Supersingular isogeny graphs

    • Size, everything is defined over GF(p^2). (*as long as the degree divides (p+1)^2 or (p-1)^2).

    • Random walks are probably the best motivation to define Ramanujanness, and are directly applicable to cryptography. A (perhaps too large) source is Hoory-Linial-Wigderson.

    • Consequence from Ramanujan + random walk convergence: O(log p) diameter.

https://arxiv.org/abs/1208.5370